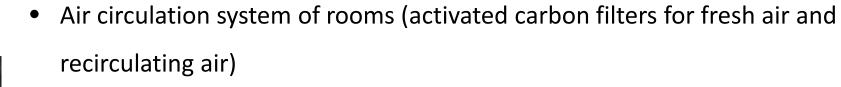
IAQ 2016

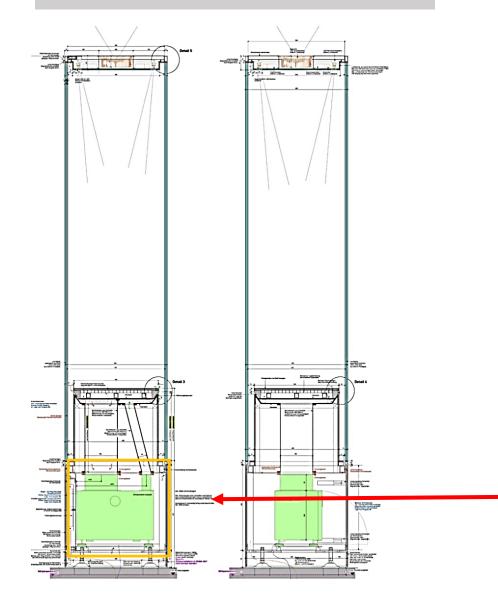

Preventive conservation strategies in the re-opened collection of the Kunstkammer of the Kunsthistorisches Museum Vienna. Theory versus Practice

S. Stanek², J. Diehl¹, V. Pitthard², H. Hanzer¹, M. Griesser² and B. Goldmann¹

Kunstkammer, Conservation Department, Kunsthistorisches Museum Vienna, 1010 Vienna, Austria ² Conservation Science Department, Kunsthistorisches Museum Vienna, 1010 Vienna, Austria

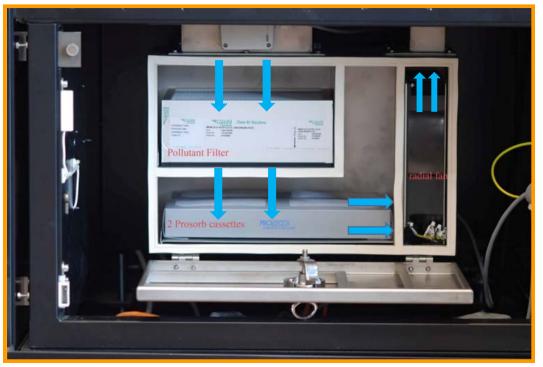
Preventive conservation strategies

• HVAC concept of Kunstkammer



- Low-emission building materials
- Air circulation system in showcases with passive air conditioning and pollutant filtering
- Showcases: integration of pollutant prevention into tendering process and contract documents
- Testing of showcase materials and emission measurements in test showcases

KK 5898, mercury, Giambologna


Showcases

195 Showcases

- internal air circulating system with passive air conditioning (different micro-climates)
- Pollutant filter
- air-thight enclosures with an air exchange rate of <0,1 per day
 99 showcases
- air tight enclosures with **no** technical equipment

Climate module for RH control and pollutant filtering

KUNST HISTORISCHES MUSEUM WIEN

Results of emission measurements^{*} in showcases with and without pollutant filtering

KK 3727, fury, Furienmeister

showcase number	pollutant	VOCs total	form-	acet-	acetic acid	formic acid
Room	filter	amount	aldehyde	aldehyde	µg/m³	µg/m³
	yes/no	µg/m³	µg/m³	µg/m³		
room 1		788	11,7	16,1	552,6	216,3
showcase 1	yes	719	16,7	18,0	363,9	153,6
room 2		293	11,7	16,1	552,6	216,3
showcase 2	yes	635	10,4	8,8	262,5	108,6
room 3		270	14,4	16,8	705,9	326,2
showcase 3.1	yes	1509	16,1	58,2	381,3	187,5
showcase 3.2	yes	2186	20,4	54,1	500,7	161,8
room 4		1001	12,1	19,3	739,7	291,3
showcase 4	yes	4325	35,3	32,0	419,9	174,8
room 5		823	13,1	22,1	845,5	527,9
showcase 5.1	yes	2900	16,8	40,8	375,9	156,8
showcase 5.2	yes	2409	18,9	55,3	562,4	217,6
room 6		227	9,7	10,1	329,0	154,9
showcase 6.1	no	12642	51,2	174,3	539,0	229,6
showcase 6.2	no	13992	51,9	273,4	614,0	113,0

* Measurements performed by BAM

Film on object surfaces in showcases without air circulation and pollutant filtering

Milky, glittering crystalline layer

KK 5846, Hercules and the Erymanthian Boar, Giambologna

KK 5501, bassin with snakes, unknown

Crystal deposits on objects: open questions

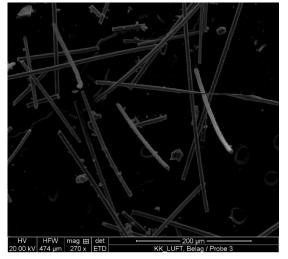
- Chemical identification/characterisation
 - What kind of material do we find on the surface?

• Source of emission:

- Where do the crystals come from?
- Can we locate which part of the showcase is responsible for the formation?
- What can we learn about the transport mechanism?
- Assessment of the impact of the contaminants to human health as well as to metal surfaces
 - How harmful are they for human health?
 - What is the damaging risk for the objects?

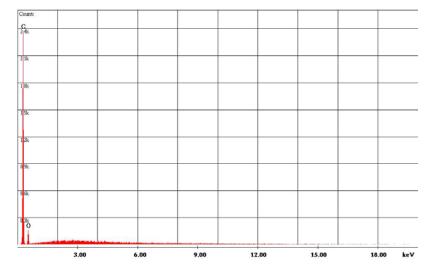
• Removement of the contaminant from the objects

• How to handle/clean the objects?


Reduction of concentration

• Can we prevent further damage?

Chemical identification/characterisationfirst investigations


What is this crystalline-like deposit? SEM/EDS

BSE image, 270x

Label A: KK_LUFT/3: weisslicher Belag (Nadeln)

 \rightarrow organic compound

 \rightarrow needle-shaped appearance

Chemical identification - external investigations

• BAM/Berlin analysis of 5 swipe samples by thermodesorption-GC/MS

 \rightarrow 1,2,2,6,6-pentamethyl-4-piperidinol

- \rightarrow benzophenone
- TNO/Utrecht* verification of the first analyses:

 \rightarrow 1,2,2,6,6-pentamethyl-4-piperidinol

KK6029 Raptusgruppe, showcase 32.11

Chemical identification/characterisationexternal investigations

• Fraunhofer/WKI

Swipe samples from object-surfaces, but also from inner glass surface of showcases (hazing)

Extraction in acetone/cold trap-GC/MS

Glass: \rightarrow mainly long-chained fatty acidsObject surface: \rightarrow 1,2,2,6,6-pentamethyl-4-piperidinol \rightarrow 2,2,6,6-tetramethyl-4-piperidinol

What is this compound like? 2,2,6,6-tetramethyl-4-piperidinol (CAS-Nr. 2403-88-5)*

- Molecular formula:
- Appearance:
- Soluble in:
- Absorbs moisture easily
- Boiling point:
- Melting point:
- Highly alkaline
- Fugacity:
- Production volume:

 $C_9H_{19}ON$

white powder, microcrystalline

acetone, ether, chloroforme

212-215°C

131 °C

- 1% solution pH: 11,47
- 0,4% into air (theoretical distribution, calculation)

OH

H

CHa

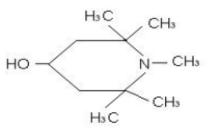
CH2.

 H_3C

 $H_3($

≈ 2.500t/year (main producers: Germany, Switzerland)

What is this compound like? 1,2,2,6,6-pentamethyl-4-piperidinol (CAS-Nr. 2403-89-6)


- Molecular formula:
- Appearance:
- Soluble in:
- Absorb moisture easily
- Melting point :

 $C_{10}H_{21}ON$

white solid, cloggy

acetone, ether, chloroform

70-76°C (literature)

solidified compound after melting at 60 °C

What is this chemical applied for?

Used in polymers industry

Production of **plastic antioxidants and/or stabilizers**

- Hindered Amine Light Stabilzer (abbreviated as HALS):
 - Extremely efficient stabilizers against light-induced degradation of most polymers
 - Act as catalysts to minimize the activation of the peroxy radicals to prevent discoloring in varnishes, rubbers and polymers

KUNST HISTORISCHES MUSEUM WIEN

Assessment of the impact of piperidinol to human health (2,2,6,6-tetramethyl-4-piperidinol)

How harmful are the contaminants for the museum workers? What are the best precautions to be taken?

Oral toxity: *LOAEL(rats) ≈ 60mg/kg LD50 (rats) ≈1500mg/kg no data about human exposure * * LC₅₀ inh. (rats): 278 mg/l/48 h LD₅₀ oral (rats): 2413 mg/kg LD₅₀ dermal (rats): >2000 mg/kg

Dermal exposure:chemical is highly irritating to skin,
strong grade of skin-sensitizing potential (pH)

Inhalation exposure: estimated emission amount is low

No available information on **toxicokinetics and metabolism** of these substances

Assessment of the impact of piperidinol derivates to metal surfaces

What is the effect on objects?

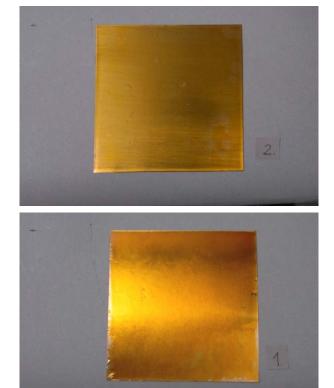
- Altered aesthetic: disfiguring of objects in display
- Alterable/unsteady structure:
 - Non-adhesive under exhibition conditions: crystalline appearance
 - Modification under lab conditions:

Crystals liquefy: quite invisible film Adhering effect to surface of object?

Caused by slightly increased T and RH?

Long-term damage to object?

KK 5846, detail Hercules and the Erymanthian Boar/Giambologna


Fabrication of bronze model coupons with organic Renaissance patina

Research project/KHM¹

- Test on about 70 sculptures
- Good knowledge about surface composition of our Renaissance bronzes

Fabrication of model coupons²

- Cooking together equal weights of linsed oil and mastic resin
- Applied on polished metall surface
- Drying at room T
- Heated to 130°C for 48h

¹ V. Pitthard, R. Stone, S. Stanek, M. Griesser, C. Kryza-Gersch, H. Hanzer: Organic patinas on Renaissance and Baroque bronzes. Interpretation of compositions of the original patination by using a set of simulated varnished bronze coupons, Journal of Cultural Heritage 12(2011), 44-53 ² R. Stone; Organic Patinas on small Bronzes of the Italien Renaissance, Metropolitan Museum Journal 45, 2010

Direct/indirect influence of piperidinol on metal surfaces

Test conditions:

1,2,2,6,6-pentamethyl-4-piperidinol (CAS-Nr. 2403-89-6): standard A 2,2,6,6-tetramethyl-4-piperidinol (CAS-Nr. 2403-88-5): standard B 5 different metal surfaces: Ag, Cu, Pb, bronze, patinated bronze Heated to 60°C, t= 4 weeks, Visually compared to blanks

Direct contact:

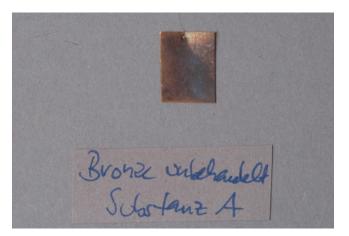
metal coupons immersed in piperidinol-standards

Indirect contact:

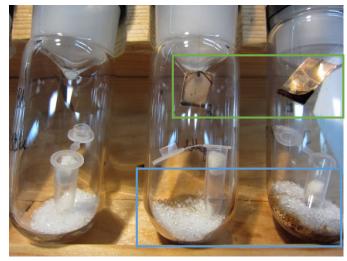
metal coupons on nylon filament hanging freely above standard A and B

Effects of piperidinol on metal surfaces

Direct contact



Indirect contact



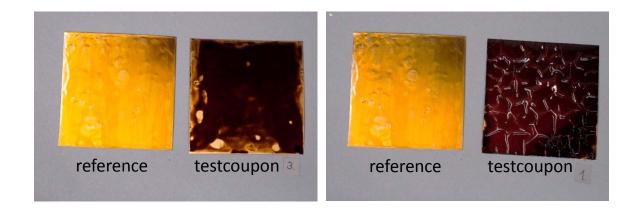
Effects of piperidinol on metal surfaces: first results

- Similar influence of standard A and B on metal surfaces
- Direct contact less severe damages than via gaseous reactions although piperidinol has a low theoretical fugacity, already small concentration in air seems to affect metals
 - Silver and lead: nearly not affected
 - Copper and bronze: severe visual changes
 - corrosion dots/ tarnishing surface
 - irregular and/or dull surface
 - Patinas: worst damage observable
 - "etching" of the patina: gets liquid
 - brownish residues on bottom of glass tube

Effects of piperidinol on metals: influence of RH?

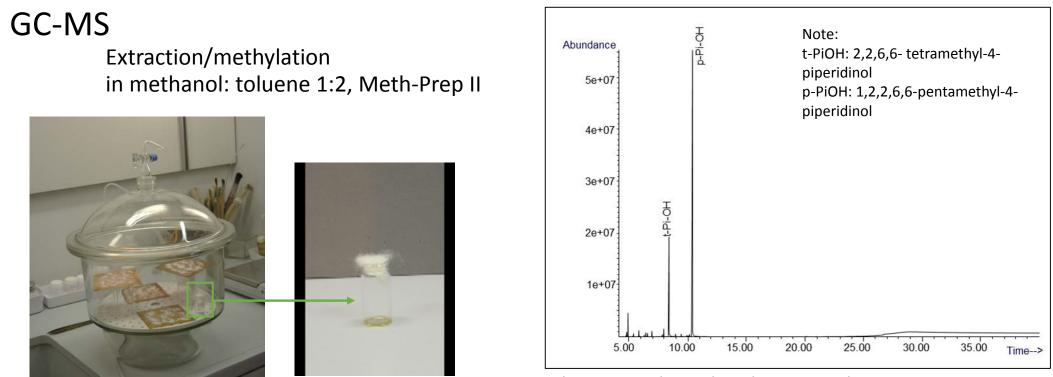
Repetition of experiments under increased relative humidity and raised temperature

SET1: patinated bronze coupons, 0,25g of standard A (powdered) directly on surface, waterSET2: patinated bronze coupons on perforated base, standard A above: no direct contact, waterBLANKS: patinated bronze coupons



heated to 60 °C

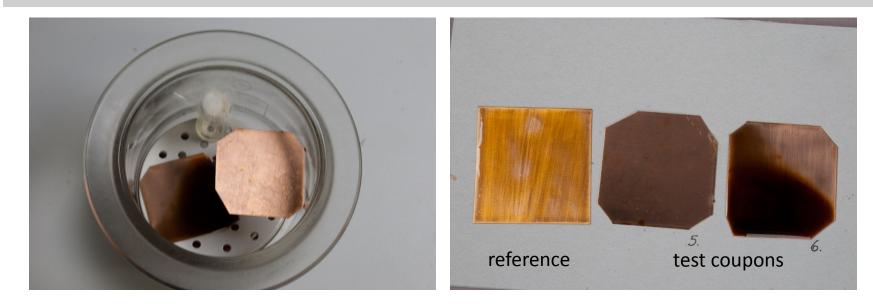
Observations: direct contact piperidinol and patinated bronze coupons/ increased RH



Notable changes:

in **colour**: in **surface texture**: darkening wrinkling (in various degrees)

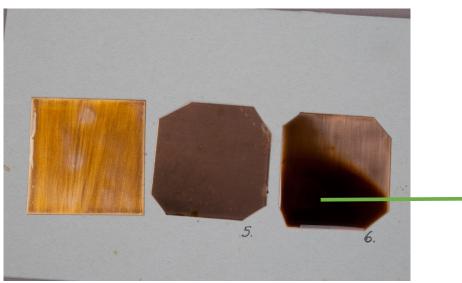
What is the residue in the glasstube for water supply composed of?

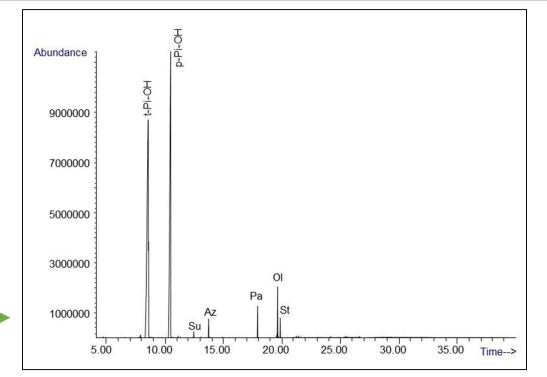


chromatogram: brownish residue in water-tube

Is the emission of piperidinol correlated somehow to humidity??

Observations: indirect contact piperidinol and patinated bronze coupons/ increased RH


Notable changes: in colour: darkening in surface consistency: from solid to a sticky liquid in surface coverage: patination gets lost



What is the liquidised patina composed of?

GC-MS

Extraction/methylation TMSH in methanol

Note:

t-PiOH: 2,2,6,6- tetramethyl-4-piperidinol p-PiOH: 1,2,2,6,6-pentamethyl-4-piperidinol

fatty acids methyl esters from drying oil

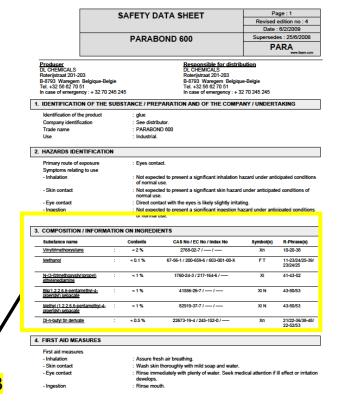
(Su=suberic acid, Az=azelaic acid, Pa=palmitic acid, Ol=oleic acid, St=stearic acid)

Source of emission- what is the possible cause of the deposit?

• Deposit only **observed after the reinstallation** of the collection

 \rightarrow correlation between occurrence of deposits and emission from new displaycases

- Focus on main emission sources (all construction materials pretested for suitability)
 - Wood (no wood/woodbased materials used)
 - Lacquers (only powder coatings used)
 - Sealants
 - → Check of material safety data sheets
 - → Emission retests


Is it really the sealant?

• Sampling and testing of different construction materials from the newly installed showcases/BAM-Berlin:

presence of 1,2,2,6,6-pentamethyl-4-piperidinol in two sealants confirmed

• Check of material safety data sheets of used sealant

COMPOSITION / INFORMATION ON INGREDIENTS Substance name Contents CAS No / EC No / Index No Symbol(s) R-Phrase(s) Vinyltrimethoxysilane : < 2 % 2768-02-7 / ----- Xn 10-20-38 Methanol : < 0.1 % 67-56-1 / 200-659-6 / 603-001-00-X F T 11-23/24/25-39/23/24/25 N-(3-(trimethoxysilyl)propyl) ethylenediamine : < 1 % 1760-24-3 / 217-164-6 / ----- Xi 41-43-52 Bis(1,2,2,6,6-pentamethyl-4- piperidyl) sebacate : < 1 % 41556-26-7 / ----- Xi N 43-50/53 Methyl (1,2,2,6,6-pentamethyl-4- piperidyl) sebacate: < 1 % 82919-37-7 / ----- Xi N 43-50/53 Di-n-butyl tin derivate : < 0.5 % 22673-19-4 / 245-152-0 / ----- Xn 21/22-36/38-48/22-52/53

Removement of the contaminant: dry/wet cleaning

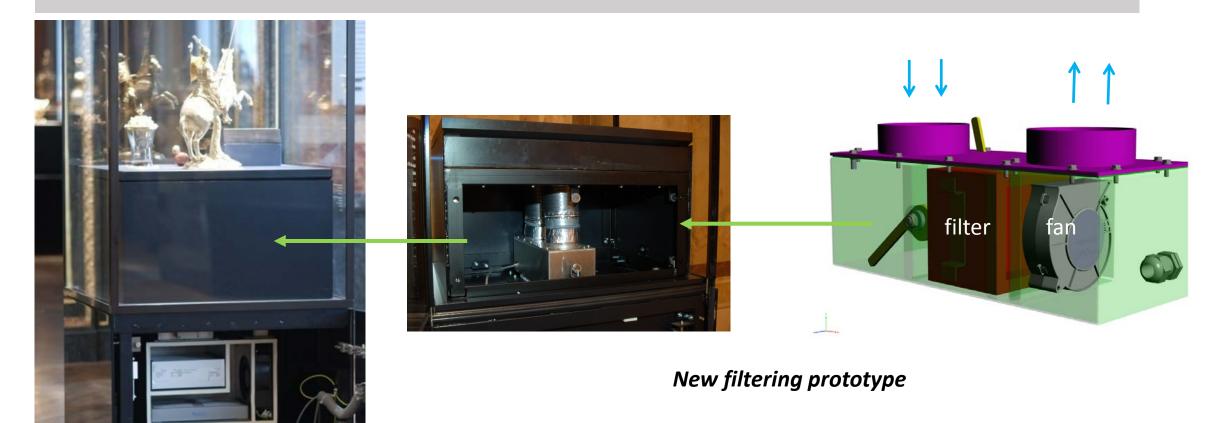
How can we get rid of the glittering layer?

Dry cleaning (brush, microfiber clothes)

• If film is crystalline

not highly adhesive and could be removed dryly

 Problem of film`s modification (change of RH and T) non-adhesive film gets liquidised


Wet cleaning (solvents)

- No effect with white spirit, water less effective than alcohols
- Needs polar solvents like EtOH (but possibly a threat to patina)

Upgrading of show cases with a filtering system

Air circulating module

Results of emission measurements* after 8 weeks operation time of the filtering prototype

	VOC (C6-C16)	Formaldehyde	Acetaldehyde	Formic Acid	Acetic Acid
Showcase 1	2078/2014	31/30	82/82	7/7	223/216
Room XXVII	52/54	5/5	6/7	9/8	75/68
Showcase 2	3034/3096	26/25	46/45	<5/<5	85/81
Room XIX	32/41	4/4	4/4	12/12	65/64
Showcase 3 with filter module	61/39	22/22	<3/<3	<5/<5	<5/9
Showcase 4	2740/2776	19/19	25/25	<5/<5	77/79
Room corridor	80/86	6/7	6/6	9/12	60/60

→ Are activated carbon filters able to adsorb piperidinol????

* Fraunhofer/WKI

No detection of piperidinol in the filters – what does that mean for us?

KK 1, detail Vanitas/ M. Erhart

- Is piperidinol **also present in showcases with filtration** system and we just do not see it?
- Is it **retained somewhere else** but in the filters? (Prosorb?)
- Is there a **change in structure** through chemical reactions with other pollutants in the filter/air?

Is piperidinol also present in showcases with filtration system?

GC-MS

swipe samples extracted in aceton

display-case	pollution filtering	visible deposit	piperidinol detected (not concentrated)	piperidinol detected (concentrated to 1/10 at 60°C)
36.11	+	-	-	-
33.08	-	+	+	++
33.03	+	-	-	+
27.20	+	+/only traces	-	+

KK 5893, showcase27.20 Allegorie der Astronomie/ Giambologna

Perspectives

Further investigations

- Collaboration with filter manufacturer to execute measurements about the filtration efficiency of piperidinol
- Better knowledge of emission, and condensation/precipitation mechanism
- Monitoring of a larger variety of objects: different surface materials, different showcase types (with/without filtering)
- Further testing for **safe cleaning** of the objects

KK 5898, mercury, Giambologna