Characterisation of fading behaviour of coloured papers during simulated display in anoxia

J. Thomas¹, A. Klisińska-Kopacz¹, J. Sobczyk¹, Ł. Bratasz¹ and T. Łojewski²

¹National Museum in Krakow, 1, 3 Maja Av, 30–062, Kraków jthomas@muzeum.krakow.pl www.muz-nar.krakow.pl ²Jagiellonian University, ul. Ingardena 3, 30-060 Kraków

Fading of coloured paper by photooxidation

MNK III-r.a. 14524; Description: Portrait of Janina Bastgen, 1933, pastel, 63.5x48.5, Signature and date: on the lower left: Ign. Witkiewicz / 1933 VI (T.B.) NP.NP

> Change of the colour: $\Delta E = \sqrt{[(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2]}$

 $\blacktriangleright \Delta \mathsf{E}_{\mathsf{edge-background}}$ $\Delta E_{\text{background-reverse}} = 8.43682$

= 6.51460

Fading of coloured papers by photooxidation

MNK III-r.a. 14616; Description: Portrait of Stefan Szuman, 1929, pastel, 64.6x48.8, Signature and date: on the lower left: T.B+d; on the lower right: Witkacy / 1929 IV / NP $\frac{1}{2}$ r 2 + Cof.

> Change of the colour: $\Delta \mathsf{E} = \sqrt{[(\Delta \mathsf{L})^2 + (\Delta \mathsf{a})^2 + (\Delta \mathsf{b})^2]}$

• $\Delta E_{edge-background}$ $\Delta E_{\text{background-reverse}} = 8.49824$

= 9.71802

The extreme fading of the exposed recto surface is apparent when compared to the unexposed verso surface and the edges.

Microfadeometer >>

Room atmosphere tests of coloured paper samples from both modern and historic sources

Characterisation of illumination spot >>

Images of spot were taken using a bare CMOS sensor and imaging software, point of focus determined by eye

Spectral distribution and beam power calculations

laser wavelength set	reading [mW]	beam power after recalculation	
prior to measurement [nm]		[mW]	[W/m ²]
400	0,4050	0,2960	5,934·10 ⁶
500	0,2795	0,2553	5,119·10 ⁶
547	0,2395	0,2395	4,802·10 ⁶
600	0,2000	0,2192	4,396·10 ⁶
700	0,1470	0,1880	3,769·10 ⁶

A survey of dyes on paper

Modern papers and blue wool standards

Samples prepared on aluminium strips for exposure in a Suntest XPS+ and measurement with a Hunter lab instrument

Historic samples

Anoxia vs. room atmosphere

The microfadeometer in a glove box for measurements

The microfadeometer in a climate controlled room for measurements

Comparison of the fading rates in anoxia and room atmosphere

Rhodamine 6GX

Raw Italian Sienna

Preparing to analyze a blue pigment on a Witkacy Pastel

A Brüker Artax XRF spectrometer is positioned over the pastel prior to measurement

Preparation of a reproduction

A copy of the *Portrait of Stefan* Szuman

Copies of the Portrait of Stefan Szuman

A schematic of the cross section of the anoxic frame design

A prototype A5 size anoxic frame for use in a Suntest XPS+ chamber

of a ygen h

Conclusions

- Microfadeometers are a useful tool for rapidly screening the light fastness of materials
 - They can be used to test the effect of specific atmospheres (anoxia in this case, but also other polutants)
 - They are micro-damaging, and if properly employed no visible damage is apparent
 - They can be used on the reverse of monofacially faded objects to estimate the historic light dose and determine further colour change potential
- Of the dyes on paper surveyed, most faded slower in anoxia
- Despite the single name, historic dyes are complex mixtures of chromophores
 - The variability between manufacturers will be evaluated in the future.
- There is a potential effect of paper substrate on light fastness, this will be investigated in the future

Thank you.