

Modelling of air quality for paintings in microclimate frames

Experiences of the Norwegian Institute for Air Research (NILU) in providing "Air Quality Services for Cultural Heritage Professionals"

NILU

Indoor Air Quality, IAQ 2010 Chalon-sur-Saône, 22nd April 2010

Contents

- Measurements and modelling of gaseous pollutants in microclimate frames for paintings.
- 2. The protection effect of a range of microclimate frames for paintings.
- 3. **NILU -** Services for Cultural Heritage Professionals

Painting degradation Worst case?

NILU

- Painted about 1935
- Moved to "worse" climate in 1995

New damage appeared

Gaseous pollutants in mc-frames

Inside emission:

<u>VOCs:</u> Acetic acid Formic acid Formaldehyde

 H_2S etc.

National Musuem of Krakow mc-frame

"Impact pollutant flux" to painting

 $F_{o}(ox + ac) = F_{o}(NO_{2} + O_{3}) + F_{o}(Form.ac + Ac.ac) C_{T1} / C_{T2}$

Infiltrating

Mainly emitted inside mc-frame

Recomended levels

$$C_{T1}(NO_2 + O_3) = 2 \mu g m^{-3}$$

 C_{T2} (Acetic + formic acid)= 100 µg m⁻³

$$F = v_d \times C(\lambda)$$

Measurements:

- Ventilation rate (air exchange) (CO₂ method)
- Inside and outside concentrations (Passive diff. samplers)
- Mc-frame geometry (Volume, Internal frame and object area)

Calculation:

- Impact fluxes to the painting
- Inside frame emisson rates

Inside depositon velocity

MICRO-CLIMATE FRAME POLLUTION EVALUATION

Recomended levels(\mug m-3) NO₂+ O₃ Acetic + formic acid

INPUT

Frame geometry

```
Volume (m<sup>3</sup>)
```

```
Internal mc-frame area (m<sup>2</sup>)
```

```
Object area (m<sup>2</sup>)
```

```
Air exchange rate (d<sup>-1</sup>)
```

Pollutant gas 1 (O₃ + NO₂, - usually infiltrating)

```
External concentration (\mu g m^{-3})
```

```
Internal concentration (µg m<sup>-3</sup>)
```

Pollutant gas 2 (Acetic + formic acid, - mainly inside emission)

External concentration ($\mu g m^{-3}$) Internal concentration ($\mu g m^{-3}$)

Design evaluation

New volume addition (include minus = "-" if negativ)
New changed volume
Added area of total absorber (e.g. activated carbon) (m
Absorber multiple of internal frame depostion velocity
Air exchange interval (d-1)

2

Excel model

Mc-frame and environme	ental data
	0.315
	1.475
	0.625
	14.900
	30.400
	5.300
	33.144
	317.111

0.000
0.315
0.000
10
0.1
123

INPUT

Frame - data

Frame and environment data

	Frame no 1 (NG)	Frame no 2 (KH)	Frame no 3 (NMK)			
	0.013	0.041	0.32			
	0.71	1.13	1.48			
	1.3	1.8	0.62			
	0.67	1.4	14.9			
1 ⁻³)	38	30	30			
⁻³)	1.5	2.5	5.3			
1 ⁻³)	29	63	33			
⁻³)	260	2058	317 ⁸			

Frame geometry

- Volume (m³)
- Internal frame area (m²)
- Object area (m²)
- Air exchange rate (d⁻¹)
- Pollutant gas 1 $(O_3 + NO_2)$
- Usually infiltrating
- External concentration (µg m⁻³ Internal concentration (µg m⁻³ **Pollutant gas 2**
- (Acetic + formic acid)
- Mainly inside emission
- External concentration (µg m⁻
- Internal concentration (µg m⁻³

Kenwood House – UK (Claude de Jongh)

Kenwood House – UK (Claude de Jongh)

Kenwood House – UK (Claude de Jongh)

							PRO	
SIXTH FRAMEWORK PROGRAMME	Modelling - Re	esul	ts		ude de udigi	keon	Polo Polo	
Ţ.	Frame no. (Table 1)	1	2	3	4	5	6	
Pollution and fra	ame parameters							
Total impact flux	in mc-frame ($\mu g m^{-2} da y^{-1}$) ¹	584	55	436	125	123	108	
Total impact flux	in room ($\mu g m^2 da y^{-1}$) ¹	298	407	322	378	329	165	
Total threshold in	npact flux ($\mu g m^2 da y^{-1}$) ¹	22	21	22	21	42	22	
Flux from infiltra	tion. "Gas 1" (μ g m ⁻² day ⁻¹)	0.18	0.16	0.53	0.065	56	0.093	
Flux from inside	emission. "Gas 1" (μ g m ⁻² day ⁻¹)	0	0	0	0	0	0	
Total inside emis	sion (+ reaction) rate. "Gas 1" ($\mu g \text{ day}^{-1}$) ²							
Impact flux from	infiltration. "Gas 2" ($\mu g m^{-2} da y^{-1}$) ¹	0.036	0.0024	0.023	0.0021	1.2	0.028	
Impact flux from	emission. "Gas 2" ($\mu g m^2 da y^1$) ¹	584	55	436	125	66	108	
Real flux from in	filtration. "Gas 2" (μ g m ⁻² day ⁻¹)	1.8	0.12	1.1	0.11	61	1.4	
Real flux from in	side emission."Gas 2"(μ g m ⁻² day ⁻¹) ²	29200	2747	21800	6250	3300	5420	
Total inside emis	sion (+ reaction) rate "Gas 2" ($\mu g day^{-1}$)"	54300	5480	63300	13200	8380	16900	
Surface depositio	In velocity used, object and frame inside $(m s^{-1})^4$	00012	0.00012	0.00012	0.00012	0.00012	0.00012	
Threshold concer	ntration level - "Gas 1" ($\mu g m_{2}^{-3}$) ⁵	2	2	2	2	2	2	
Threshold concer	ntration level - "Gas 2" (μ g m ⁻³) ⁵	100	100	100	100	100	100	
"Gas 2" – ventila	tion for threshold concentration below ($\mu g m^3$)	226	13	150	34	23	59	
"Gas 2" – thresho	bld concentration, flux = unprotected flux ($\mu g m^{1}$)	216	12	137	31	23	55	
"Gas 2" - thresho	old concentration, flux = threshold flux ($\mu g m^{-3}$)	2736	259	2070	591	imp	505	
Measured ventila	tion rate (day^{-1})	0.19	0.67	1.39	0.15	14.9	0.42	
Optimal (advised) ventilation rate. (dav^{-1})	ventilate	0	ventilate	0	0	0	

6							PRO
	Modelling - Results						
on, Storage and Transit			Munch	C) aude	S S S S S S S S S S S S S S S S S S S	Leonardo	
Frame no.		1	2	3	4	5	6
NO₂ + O₃ (μg m ⁻² d ⁻¹)		0.18	0.16	0.53	0.065	56	0.093
(2/100)*(Acetic + Fo (μg m ⁻² d ⁻¹)	rmic acid)	584	55	436	125	66	108
Threshold (Ac + Fo) = (μg m ⁻³)	Unprotected	216	12	137	31	23	55
Ventilate (V) or Seal	(S)	V (?)	S	V (?)	S	S	S

Ρ

Protection effect of frames vs. rooms (gaseous pollutants)

PROPAINT end users:

(2)

Institution No

2 3

5

6

- SIT laboratories
- Nasjonalmuseet for Kunst, Arkitektur and Design, Oslo, Norway
- English Heritage, Apsley Hous, UK
- Tate Store, London, UK
- Statens Museum for Kunst, Copenhagen, Denmark
- Fine Arts Museum, Valencia
- 7 National Museum of Art, Mexico City, Mexico
- 8 Germanishes Nationalmuseum, Nürnberg, Germany
- 9 National Museum in Krakow, Poland
- 10 Uffizi Gallery
- 11 Centre for Conservation Science and Restoration Techniques, National Research Institute of Cultural Properties, Tokyo

SIXTH FRAMEWOR

AN

Thank you!

NILU - Norwegian Institute for Air Research BIRKBECK College, Department of Chemistry, University of London Royal Danish Academy of Fine Arts, The School of Conservation SIT – International Transporters, Madrid, Spain Fraunhofer Institute for Silicate Research, Bronnbach, Germany National Museum in Krakow, Poland Department of Chemistry and Industrial Chemistry, University of Pisa, Italy

