

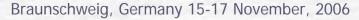
Testinggos Als Guberg 2000 teacong (sAQ2006)

Air Quality Monitoring in European Museums: 2000 to Present

Chris Muller – Purafil, Inc. Richard Corel, Rene van Dijke – Purafil Europa

A Little Background

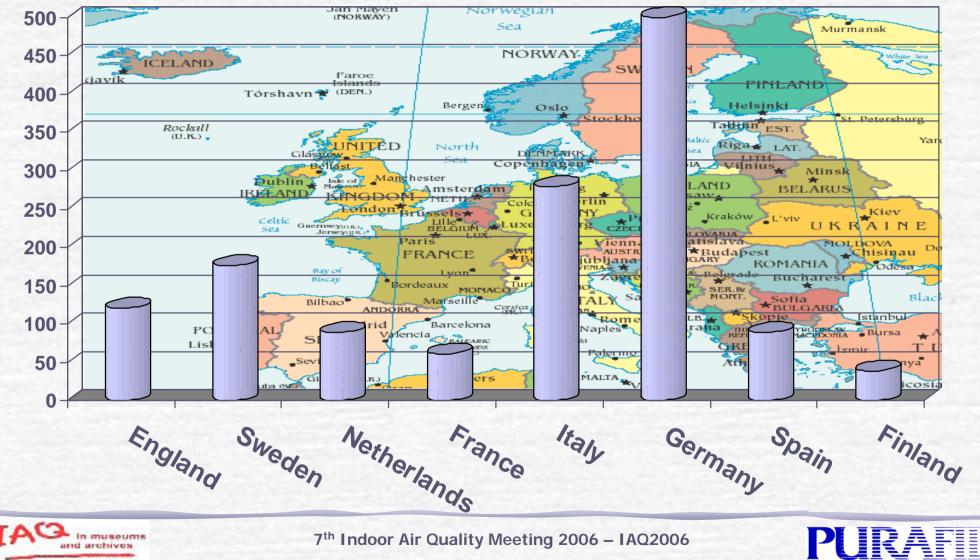
A previous study* of air quality in European museums had compiled reactivity monitoring data for the period 1990 – 1999.


- Presented data from analysis of environmental reactivity coupons (ERCs).
 - 8 countries; 60 museums, libraries, and archives; mostly silver coupons

In museums

Ten Insport All Guarty 2006 Hearing - MQ2006

* Muller, C. (2002) "Practical Applications of Reactivity Monitoring in Museums And Archives," In *Proceedings of Conservation Science 2002*, Edinburgh, Scotland, Chapter 9, 50-57.



Indoor Air Quality Measurements (1990-1999)

First...inclean air

Timénaposi Ala Quaety 2906 Heleong -pAQ2906

A Little More Background

- The "cause-and-effect" relationship between levels of gaseous pollutants and the damage caused to materials and artifacts remains elusive.
- There is no real agreement on what actually constitutes an acceptable environment with respect to airborne gaseous pollutants.

7th Indoor Air Quality Meeting 2006 – IAQ2006 Braunschweig, Germany 15-17 November, 2006

Museum Air Quality Standards

Contaminant/Parameter	Concentration		Reactivity Level,	
Measured	ppb	µg/m³	Å/30 days	
Acetic acid	< 4	<10		
Chlorine	≤1 - 3	≤3 - 9		
Formaldehyde	< 4	< 5		
Hydrogen chloride	≤1 - 3	≤1.5 - 4.5	-	
Nitrogen dioxide	≤2.65	≤5	2 1 1 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Ozone	≤0.94 - 12.5	≤1.8 - 24.5	-	
Sulfur dioxide	≤0.35 - 1.0	≤1 - 2.85	-	
Silver Corrosion			<100 ^a	
Copper Corrosion		_	<150 ^b	

These are still the most commonly cited specifications for gaseous pollutants, although H₂S and COS are beginning to show up as well.

a - with no chloride corrosion evident, b - with no sulfur corrosion evident

7th Indoor Air Quality Meeting 2006 – IAQ2006

ERC Sensitivities

Chemical Class	Chemical Types	Detection Limits
Inorganic chlorine compounds	Cl ₂ , HCl	<1 ppb
Halogen acids	F ₂ , HF, HBr, HI	<1 ppb
Strong oxidants	O ₃ , CIO ₂ , HNO ₃	<2 ppb
Active sulfur compounds	H ₂ S, COS, elemental sulfur, mercaptans	<3 ppb
Sulfur oxides	SO_2 , SO_3 (sulfuric acids)	<10 ppb
Nitrogen oxides	NO, NO ₂ , N ₂ O ₄	<50 ppb
Ammonia and derivatives	NH ₃ , NMP, amines	200-500 ppb

7th Indoor Air Quality Meeting 2006 – IAQ2006

Braunschweig, Germany 15-17 November, 2006

Museum Air Quality Standards (2)

Reactivity monitoring is a standard for all Dutch government archives.

"Advisory guide-line air quality archives" (March, 1995)

"The chemical pollution of the air in the archives should meet the air purity class DELTA 1, extremely pure, with a maximum corrosive value of the air of 40 Å (Ångstroms) per 30 days."

Page 10 – Section 3.3 Air Purity, subsection 3.31

7th Indoor Air Quality Meeting 2006 – IAQ2006

Air Quality Standards for Copper and Silver Reactivity*

Copper Reactivity		Silver Reactivity			
Class	Air Quality Classification	Corrosion Amount	Class	Air Quality Classification	Corrosion Amount
C1	Extremely Pure	<90Å / 30 days	S1	Extremely Pure	<40Å / 30 days
C2	Pure	<150Å / 30 days	S2	Pure	<100Å / 30 days
C3	Clean	<250Å / 30 days	S3	Clean	<200Å / 30 days
C4	Slightly Contaminated	<350Å / 30 days	S4	Slightly Contaminated	<300Å / 30 days
C5	Not Acceptable	≥350Å / 30 days	S5	Not Acceptable	≥300Å / 30 days

*Reactivity monitoring is being drafted as an ISO standard (ISO/CD 11844).

7th Indoor Air Quality Meeting 2006 – IAQ2006

Braunschweig, Germany 15-17 November, 2006

Air Purity Recommendations

Class S1/C1: Archives, Metal Collections, Rare Books

Class S2/C2: Museums, Museum Storage, Libraries

Class S3/C3: Historic Houses

Class S4/C4: Indoor Short Term Acceptable

Class S5/C5: Not Acceptable

7th Indoor Air Quality Meeting 2006 – IAQ2006

Braunschweig, Germany 15-17 November, 2006

ERC Data Analysis

Corrosion on copper is nonlinear.

Main corrosion products are sulfides and oxides.

Silver corrosion is essentially linear.

Main corrosion products are chlorides, sulfides, and oxides.

Outdoors: <u>Copper</u> > <u>Silver</u> due to RH effects and higher pollutant concentrations than indoors.

Indoors: <u>Silver</u> > <u>Copper</u> if temperature/RH controlled.
 Silver is much more sensitive to low levels of pollutants.

7th Indoor Air Quality Meeting 2006 – IAQ2006

ERC Database for Museums (2000-present)

Worldwide

USA

This inspect we duranty 2006 insurang raid 2006

In museums

- 19 countries
- 282 different locations
 - 228 museums
 - 30 archives including 8 national facilities
 - 24 libraries including 10 national facilities
- More than 4,000 ERCs, more than 75 ERMs

• 31 states and the District of Columbia

7th Indoor Air Quality Meeting 2006 – IAQ2006

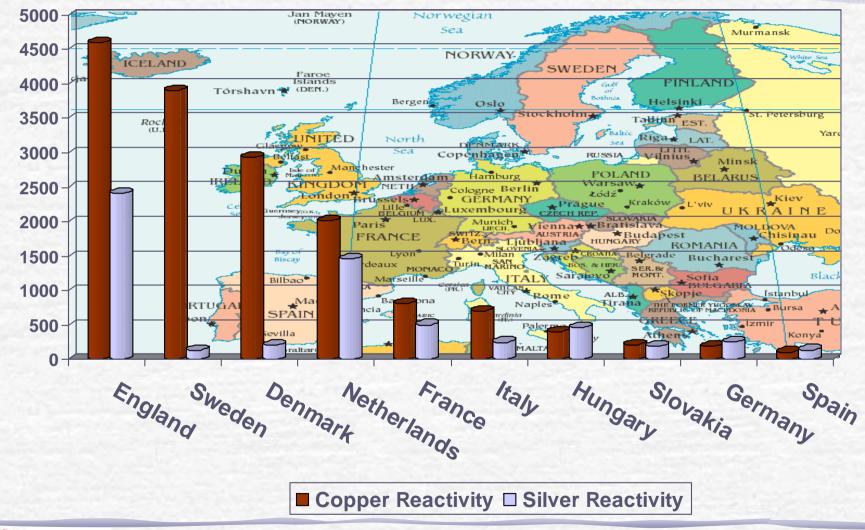
ERC Database for Museums (2) (2000-present)

Europe

- 12 Countries
- 41 Cities
- 74 Museums / Archives / Libraries
- 559 ERCs

In museums

Ten inspose was Guperty 2006 insurang -aAQ2006

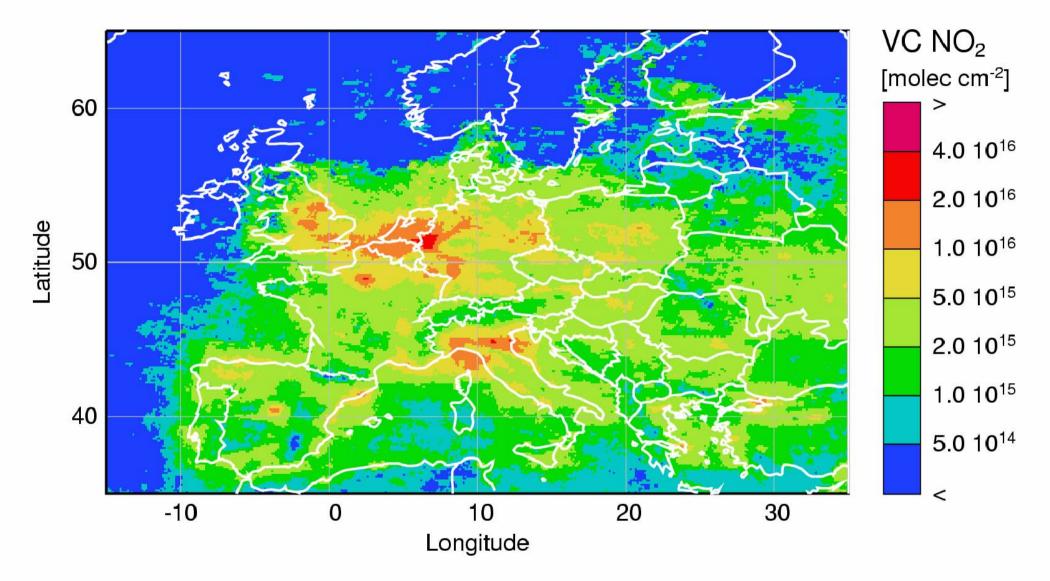

Asia – 4 countries, 7 cities, 9 locations, 98 ERCs
Australia – 5 cities, 14 locations, 106 ERCs

7th Indoor Air Quality Meeting 2006 – IAQ2006

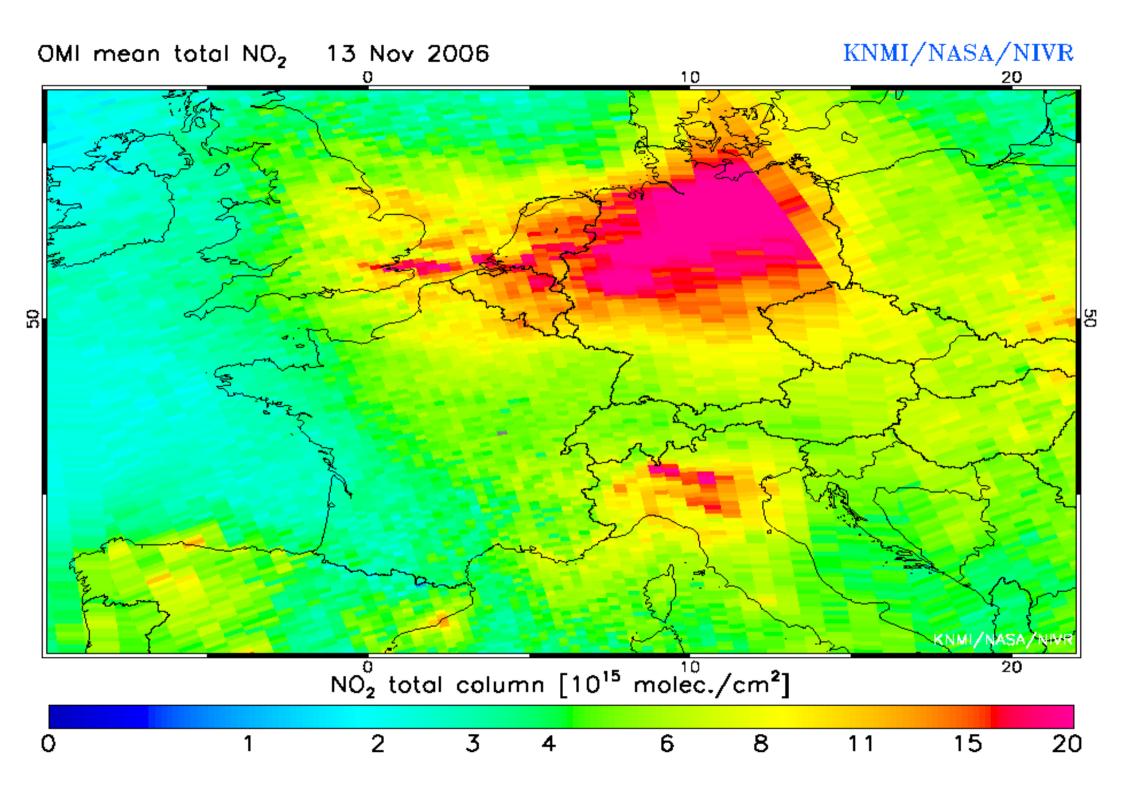
Braunschweig, Germany 15-17 November, 2006

Outdoor Air Quality Measurements (2000-present)

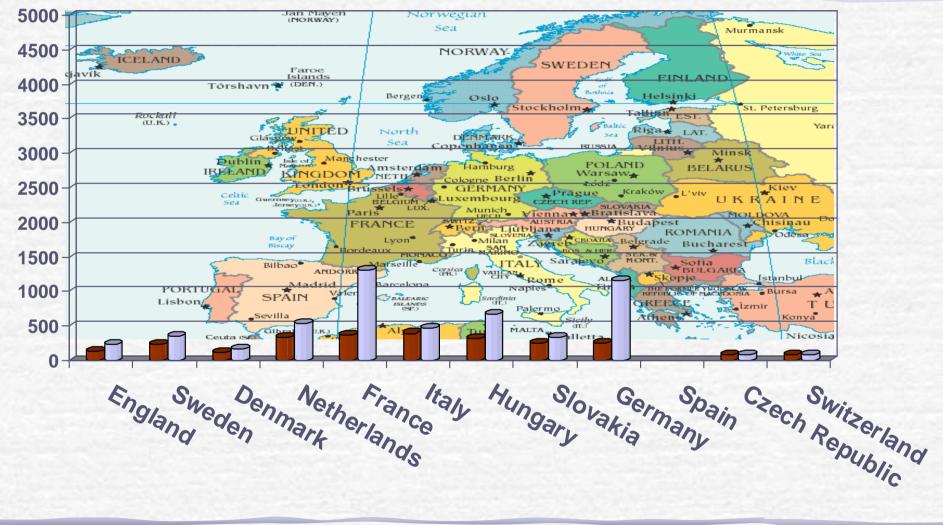
7th Indoor Air Quality Meeting 2006 – IAQ2006


In museums

nd archives


This happen was bluerty 2006 thereang -sAQ2006

Braunschweig, Germany 15-17 November, 2006



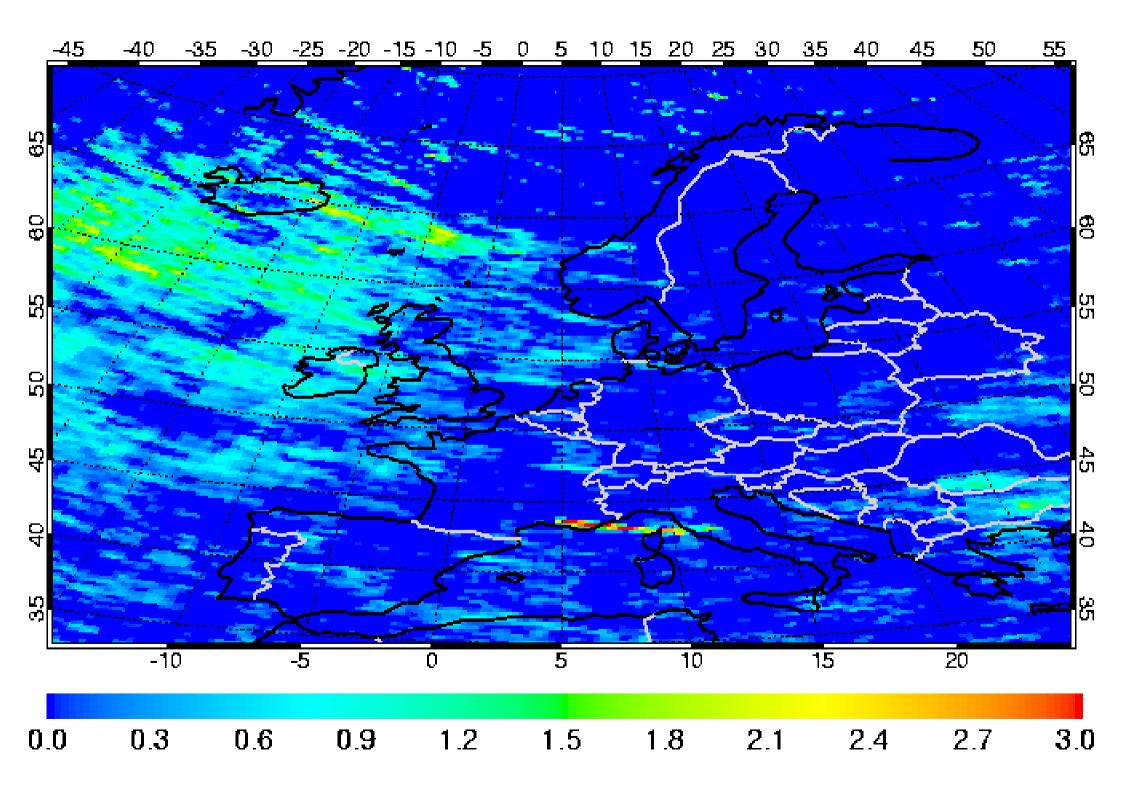
Indoor Air Quality Measurements (2000-present)

7th Indoor Air Quality Meeting 2006 – IAQ2006

Braunschweig, Germany 15-17 November, 2006

Indoor Air Quality Measurements (2) (2000-present)

Indoor levels of corrosion average ~50% of outdoor levels – indicating interior sources of pollutants.


- Where air cleaning is employed, indoor corrosion levels are less than 10% the corresponding outdoor levels.
- 25% of copper coupons show sulfide corrosion, again indicating interior sources of pollutants.
- Sulfur dioxide pollution is ubiquitous and <u>EVERY</u> silver coupon shows sulfide corrosion.

7th Indoor Air Quality Meeting 2006 – IAQ2006

Braunschweig, Germany 15-17 November, 2006

Future Work

Look at seasonal variations

Corrosion amounts vs. regional NO₂, SO₂, O₃ levels.

Look at humidity effects – especially indoors.

Compare location & comparable use categories.
 Metal collections, film storage, paper archives, etc.

A lot more I cannot think of right now!

oot wa Guarty 2006 Inscord -skQ200

7th Indoor Air Quality Meeting 2006 – IAQ2006

Braunschweig, Germany 15-17 November, 2006

Conclusions

- The use of reactivity monitoring in conservation environments is expanding as a tool for assessing the aggressiveness of outdoor and indoor environments with regards to gaseous pollutants.
- A standard classification system is in place that provides a numerical risk index to convey this information to conservators.
- Continued examination of this data will serve to refine this air monitoring technique.

7th Indoor Air Quality Meeting 2006 – IAQ2006

Braunschweig, Germany 15-17 November, 2006

Thank you for your attention.

Questions?

Ten inspore was Galacty 2000 inseging -shQ2006s

7th Indoor Air Quality Meeting 2006 – IAQ2006

Braunschweig, Germany 15-17 November, 2006

