Indoor air quality in show cases -

Introduction

Experimental

Results

Conclusions

References

an attempt to standardise emission measurements

Oliver Hahn, Olaf Wilke, Oliver Jann

Federal Institute for Materials Research and Testing (BAM), Germany

Indoor air quality in show cases

Introduction

Exhibit cases should protect cultural objects from dust as well as from mechanical damage.

Vienna, museum for natural history

 several building materials, including woods and coatings, are possible sources of VOC in the indoor environment

a variety of different emission measurements clarify that many substances such as formaldehyde, acetic and formic acid have a high hazardous potential

Results

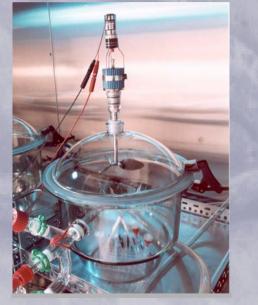
Conclusions

Introduction

Experimental

References

Is it necessary to establish limiting values? What about risk potentials of substances such as siloxanes?


Experimental methods - overview

- 1) **Dynamic headspace method** (thermal extraction)
 - 2) Emission measurements in **test chambers** (or test cells)

investigation of new materials / products

long-term studies

3) In-situ measurements, applied to exhibition rooms, show cases and storage rooms

Introduction

Experimental

Results

Conclusions

Experimental methods – thermal extraction

Materials	Emission
glass paint, air-dried	cyclohexanone, propylene glycolether derivate
glass paint, heat-dried	cyclohexanone, propylene glycolether derivate
powder varnish	no substances detected
polymer adhesive	alkanes, alkenes, butyl hydroxyl toluene, various aromatic compounds
1-component adhesive	methyl isobutyl ketone, oximes
2-component adhesive	cyclic siloxanes
silicon sealant	oximes, siloxanes, 1-methoxy-2-propyl acetate, acrylic acid ethylhexyl ester

Introduction

Experimental

Results

Conclusions

- the results reflect actual conditions only to a **limited extend** and are therefore only moderately suitable for quantitative estimations
- provide essential information about whether pollutants could be emitted from the materials at all

Experimental methods – emission tests

 VOC sampling is accomplished using Tenax TA or activated carbon filters with a follow-up thermal desorption and GC/MSD analysis

Tenax TA tube (200 mg, 60-80 mesh)

Introduction	
Experimental	
Results	
Conclusions	
References	

- thermal desorption (Gerstel TDS-2) combined with
- gas chromatography (Agilent Technologies 6890N)
- mass spectrometer (Agilent Technologies 5973N)
- analytical column: HP1, 60 m × 0.25 μ m × 0.25 mm or DB624, 30 m × 0.25 μ m × 1.4 mm
- quantification with **internal standards** (cyclodecane, toluene-d8 in methanol) or external quantification

Experimental methods – emission tests

 characterisation of aldehydes and ketones by use of derivatisation with dinitrophenyl-hydrazine (DNPH) followed by solvent extraction with acetonitrile and HPLC analysis

DNPH cartridge (LpDNPH S10)

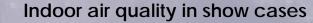
- elution with acetonitrile
- HPLC with coupled UV-detection at 365 nm
- analytical column (ULTRASEP ES ALD, 125 × 2.5 mm × 3 μm)
- pre-column (3×10 mm)
- solvent A: acetonitrile / solvent B: water; gradient programme
- external calibration

Introduction

Experimental

Results

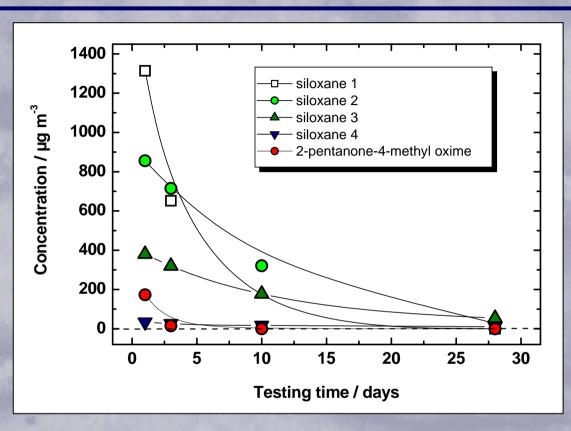
Conclusions



Experimental methods – emission tests

• SVOCs are collected on polyurethane foams. After solvent extraction the analyses are also carried out with GC/MSD

- liquid injection combined with
- gas chromatography (Agilent Technologies 6890N)
- mass spectrometer (Agilent Technologies 5973N)
- analytical column (HP1, 30 m × 0.25 µm × 0.25 mm)
- external quantification

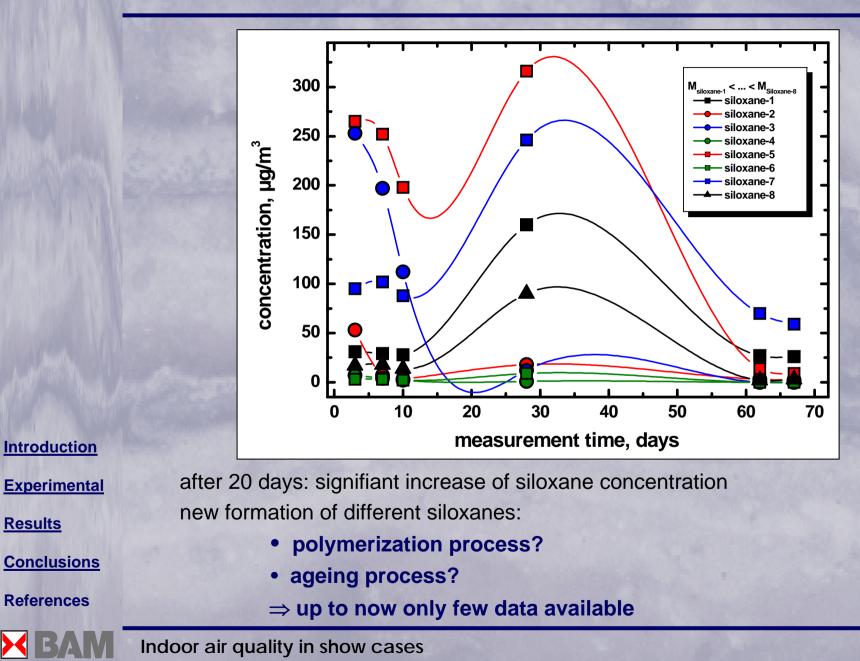


Introduction Experimental Results

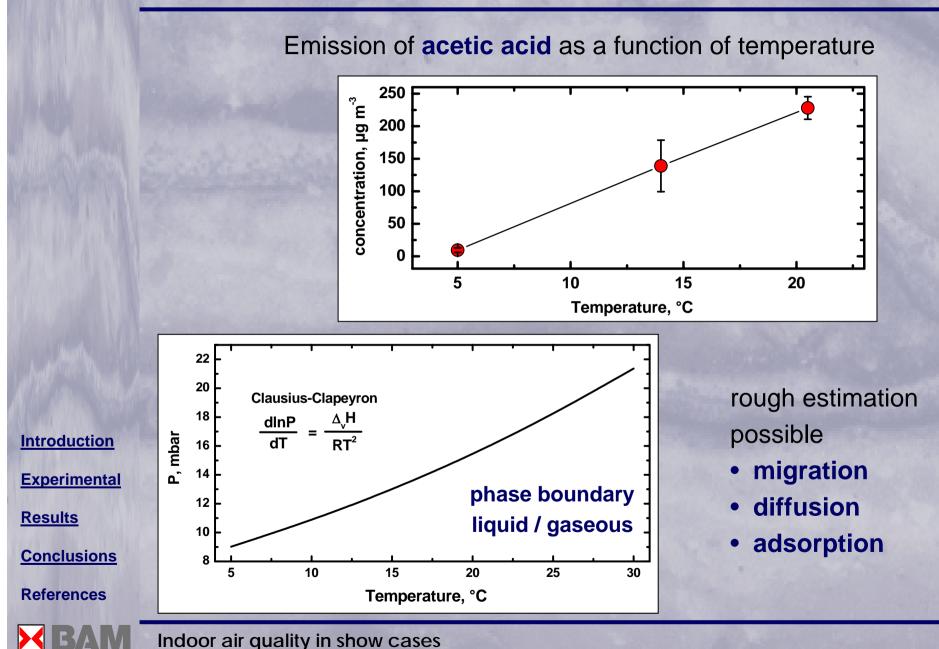
<u>Conclusions</u>

Results – emission of siloxanes

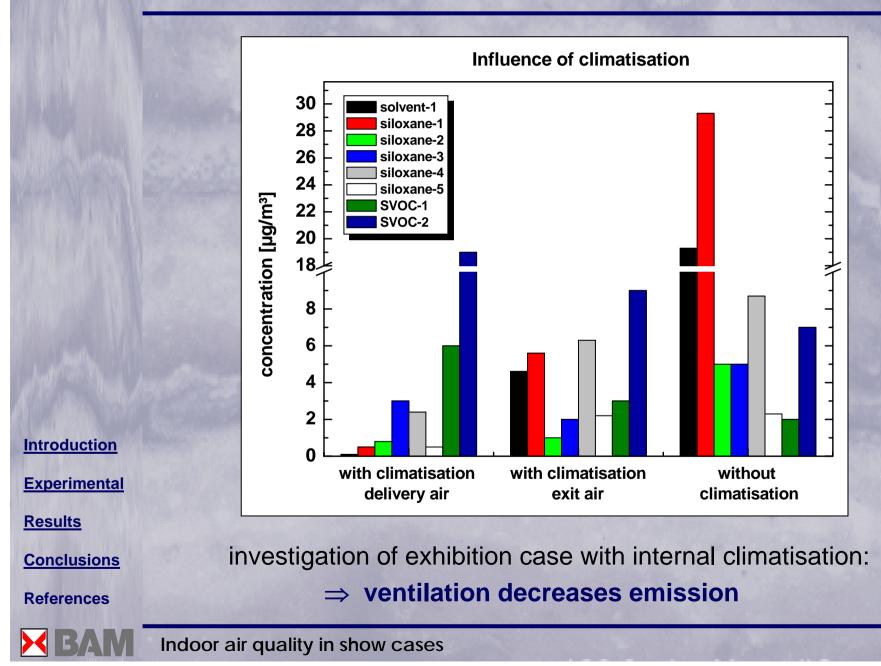
Introduction Experimental Results Conclusions

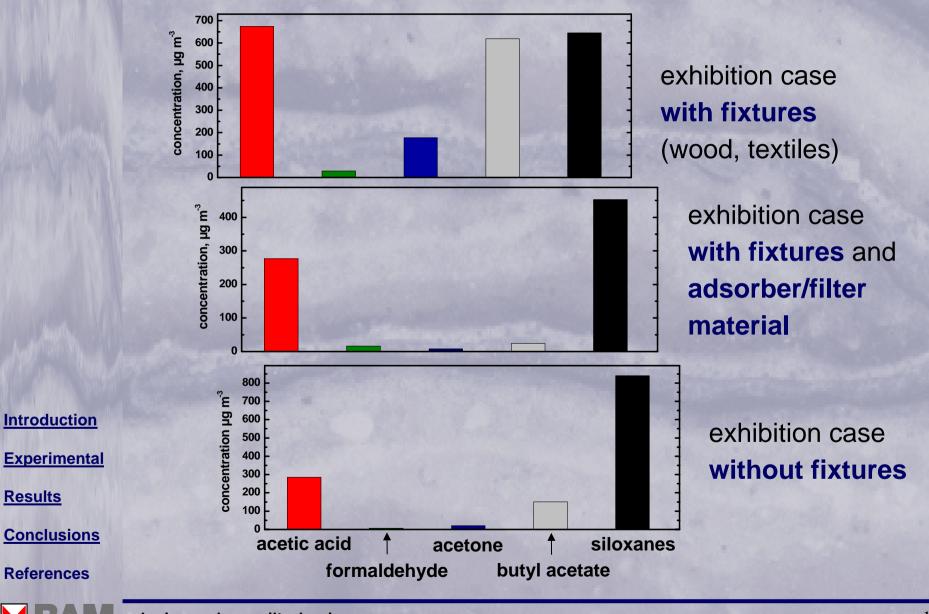

References

concentration profiles of siloxanes and pentanone-methyl-oxime as a function of testing time


- characterisation by means of TENAX sampling
 - clear decrease in concentration over 28 days
- siloxane compounds as well as pentanone-methyloxime do not present

any damage potential after 4 weeks


Results - influence of "time"


Results - influence of temperature

Results - influence of climatisation

Results - influence of sample preparation

Conclusion

scientists improvement of measuring techniques

- reliability
- reproducibility

Introduction

Experimental

Results

Conclusions

References

restorers / conservators

protection of cultural heritage

- avoidance of hazardous materials
- optimal storage

- round robin tests
- detection limits

Indoor air quality in show cases

manufactors consideration of further "quality demands"

- closeness of exhibition cases
- adherency of sealants
- processability of building materials

Conclusion

emission measurements in emission test chambers / test cells

- investigation of new materials / products
- long-term studies
- standard conditions

in-situ measurements applied to **exhibition rooms**, **show cases** and **storage rooms**

under working conditions

Introduction Experimental Results Conclusions References

Is it necessary to establish limiting values? What about risk potentials of substances such as siloxanes?

Conclusion

glass corrosion

pigment degradation lead corrosion

fading

- many corrosion processes are characterised
- risk potential of acetic acid, formic acid, formaldehyde, insecticides is well known
- for many substances it is not possible to establish limiting values!
- we have to estimate the impact of differents compounds (such as siloxanes) on a variety of different materials

Indoor air quality in show cases

Introduction

Experimental

Acknowledgement

D. Brödner, S. Kalus, C. Süßmilch (BAM)

Thank you for your attention!

Introduction

Experimental

Results

Conclusions

References

Indoor air quality in show cases

References

DIN ISO 16000, Teil 6 (09/2002).

VDI 3862, Blatt 3 (Dezember 2000) und DIN ISO 16000, Teil 3 (08/2002).

ECA-Report No. 2, Formaldehyde Emission from Wood Based Materials: Guideline for the determination of steady state concentrations in test chambers. EUR 12196 EN, April 1989.

ECA-Report No. 8, Guideline for the Characterization of Volatile Organic Compounds Emitted from Indoor Materials and Products Using Small Test Chambers. EUR 13593 EN, 1991.

ECA-Report No. 13, Determination of VOCs emitted from indoor materials and products – Interlaboratory comparison of small chamber measurements. EUR 15054 EN, 1993.

ECA-Report No. 18, Evaluation of VOC Emissions from Building Products – Solid Flooring Materials. EUR 17334 EN, 1997.

ISO 16000-9: Determination of the emission of volatile organic compounds from building products and furnishing – Emission test chamber method (02/2006).

ISO 16000-10: Determination of the emission of volatile organic compounds from building products and furnishing – Emission test cell method (02/2006).

ISO 16000-11: Determination of the emission of volatile organic compounds from building products and furnishing – Sampling, storage of samples and preparation of test specimens (02/2006).

O. Jann, O. Wilke, D. Brödner, U. Schneider, S. Marten: Die Umgebungsluft von Exponaten – Belastung durch flüchtige organische Verbindungen, Restauro 6, (2000), 428-441.

C.M. Grzywacz: Pollution monitoring in storage and display cabinets: carbonyl pollutants in relation to artifact deterioation. Preventive Conservation, IIC Congress 1994, preprints 164-170 (1994).

Results S. Hackney: The distribution of gaseous air pollution within museums. Studies in Conservation 29/3, 105-116 (1984).

ConclusionsM. Risholm-Sundmann, M. Lundgren, E. Vestin, P. Herder: Emissions of acetic acid and other volatilevolatile
organic compounds from different species of solid wood. Holz als Roh- und Werkstoff 56, 125-129 (1998).ReferencesM. Ryhl-Svendsen: http://iaq.dk/biblio/biblio.htm

Introduction

Experimental