Development of an Early Warning Dosimeter for Organic Museum Objects

The 7th Indoor Air Quality Meeting Braunschweig 15-16 November 2006

Elin Dahlin, Terje Grøntoft and Gaute Svenningsen Norwegian Institute for Air Research <u>www.nilu.no</u>

Background The dosimeter working principle

- End user requirements
- Presenting a portable prototype - demonstration

Background - MASTER

The EC funded MASTER project: "Preventive Conservation Strategies for Protection of Organic Objects in Museums, Historic Buildings and Archives"

 Two dosimeter prototypes were developed (EWO-G and EWO-S)

Close cooperation with end-users

An refined preventive conservation strategy for organic objects was developed

MASTER Participants

Research institutions:

- Norwegian Institute for Air Research (NILU), NO
- Centre for Sustainable Heritage (UCL), UK
- Albert Ludwigs University Freiburg (ALU-FMF), DE
- Technical University of Crete (TUC), GR

Museum partners and subcontractors:

- National Museum in Krakow, PO
- Trøndelag Folk Museum, NO
- Historic Royal Palaces, UK
- The National Trust, UK
- Württembergisches Landesmuseum, DE
- Wignacourt Collegiate Museum, Rabat, ML

Background (cont.)

- Exploitation of the MASTER results
- The Research Council of Norway has supported further development of a new prototype
- 1 year project (2006-2007)
- Cooperation with experienced product development partners
- The objective is to develop a product ready for the market

The initial idea

- To develop an early warning system for organic objects (EWO)
- To assess the effect of indoor environment
- Should be a generic effect dosimeter
 - simulating degradation of organic materials
- Based on recommendations identified by end-users

The dosimeter working principle

The dosimeter is a glass substrate coated with an organic polymer

The film is applied by spin coating, which gives a uniform film thickness

The dosimeter working principle

- The polymer film reacts with air pollutants and becomes less transparent
- The dose is quantified as change in UV absorption (340 nm), using a photo spectrometer

Effect of the environment

Organic acid

EWO-G 6

9

2

9

3

4

EWO-G 6 Sheltered

Silk

sample

0

Trøndelag Folk Museum, Norway

Statistical calibration

EWO effect = $0.75 \text{ NO}_2 + 1.34 \text{ O}_3 + 0.51 \text{ T} + 0.35 \text{ UV}$ (ppb) (ppb) (°C) (mWm^{-2}) 40 Measured response 30 0 20 10-0

> 10 20 30 Predicted response

40

Measurment by photo spectrometer

- Field and laboratory samples were measured by photo spectrometer
- Automatic sample holder for up to 8 dosimeters
- Can measure wavelength from 200 – 1100 nm
- The EWO-dosimeter response was measured at 340 nm

Effect thresholds

- Change in absorption is converted to EWOresponse level from 1 to 5
- Threshold levels based on available measures for environmental parameters and standards
- The response level has been calibrated to match 5 typical museum environments
- Calibration based on field measurements of:

 NO_X , SO_2 , UV, RH/T and O_3

Dosimeter response level

Kind of building	EWO response level					
	1	2	3	4	5	
Archive	Expected environment (acceptable)	Environment could be better	Environment is poor	Something is wrong with control	Serious problem with building/control	
Purpose built museum	Environment is very good	Expected environment (acceptable)	Environment could be better	Environment is poor	Something is wrong with control	
Historic house museum	Excellent environment	Environment is very good	Expected environment (acceptable)	Environment could be better	Environment is poor	
Open structure	Dosimeter is not responding	osimeter is not Excellent esponding environment		Expected environment (acceptable)	Environment could be better	
External store with no control	Dosimeter is not responding	Dosimeter is not responding	Excellent environment	Environment is very good	Expected environment (acceptable)	

Developed by Centre for Sustainable Heritage, UCL, London

Average concentration Exposure time: NO₂ O_3 3 months (ppb) (ppb) **EWO response level** 1 Archive store 1.15 1 2 Purpose built 2.5 3 museum 6.5 5 3 Historic building 10 12.5 4 Open structure 5 External store with 25 no control 15

Response for some pollutants

End-user requirements

- Visual response
- Easy to use
- Easy to interpret
- Cheap
- Inert
- Small (the dosimeter)
- Durable
- Wide range of sensor sensitivities
- Short-term and long term options
- Able to relate to other kinds of monitoring
- A diagnostic element to the sensor
- All environmental risks to be monitored

End-user requirements

Have the end-user requirements been fulfilled?

Measurement by photo spectrometer

- Expensive
- Relatively complicated to use

Is there a need for a simpler dosimeter analyser?

An alternative EWO reader

Inexpensive

- No experience needed
- Small, can easily be moved
- First prototype is developed
- Second

prototype to be developed

Practical demonstration

Analysis of EWO-dosimeter

Dosimeter response level

Kind of building	EWO response level					
	1	2	3	4	5	
Archive	Expected environment (acceptable)	Environment could be better	Environment is poor	Something is wrong with control	Serious problem with building/control	
Purpose built museum	Environment is very good	Expected environment (acceptable)	Environment could be better	Environment is poor	Something is wrong with control	
Historic house museum	Excellent environment	Environment is very good	Expected environment (acceptable)	Environment could be better	Environment is poor	
Open structure	Dosimeter is not responding	osimeter is not Excellent esponding environment		Expected environment (acceptable)	Environment could be better	
External store with no control	Dosimeter is not responding	Dosimeter is not responding	Excellent environment	Environment is very good	Expected environment (acceptable)	

Developed by Centre for Sustainable Heritage, UCL, London

Further research

- The EWO-G dosimeter will be used as one of three doismeters in a new EU funded project PROPAINT – "Improved protection of paintings during exhibition, storage and transit", starting 2007.
- The other doismeters are: glass dosimeters from the AMECP project and piezoelectric quarto crystal doismeters from the MIMIC project.

Further development of the prototype

- NILU is now working on the development of a second prototype which should be ready for the market
- In this case we will need your help.
 - What are your comments to the EWO-G prototype 1?
- How could it be improved?
- Please contact us during this conference or send an e-mail to <u>emd@nilu.no</u> or <u>gsv@nilu.no</u>

Acknowledgement

- Financial support from:
- For the MASTER project:
 - The European Commission, The Norwegian Archive, Library and Museum Authority.
- Thanks to all the partners in the MASTER project for their work
- For this project:
 - The Norwegian Research Council
- Thank you for your attention!

Measuring procedure

 Dosimeter is analysed (initial absorption measurement)

- 2. Dosimeter is exposed for <u>3 months</u>
- Dosimeter is analysed again (second absorption measurement)
- 4. The <u>response</u> is the change in absorption at 340 nm
- 5. The result is presented as an <u>EWO-</u> response level

Calibration equation:

EWO-G effect = $0.75 \text{ NO}_2 + 1.34 \text{ O}_3 + 0.51 \text{ T} + 0.35 \text{ UV}$

(ppb) (ppb) ($^{\circ}$ C) (mWm⁻²)

Trigger values for environmental parameters and for the EWO-G.

Calibration point		Trigger values					
		NO ₂	O ₃ UV		$T(^{\circ}C)$		
		(ppb)	(ppb)	(mW/m^2)	RH =	RH =	RH =
					45 %	55 %	65 %
1	Increasing	1	1.15	1	20.8	19.3	18.2
2	deterioration	2.5	3	3.75	22.9	21.4	20.2
3	I	5	6.5	15	24.5	23	21.8
4		10	12.5	37.5	26.8	25.3	24.1
5	\checkmark	15	25	37.5	29.0	27.6	26.2

Interpretation of the EWO-G dosimeter

Example: Museums from MASTER field test

Station	EWO	Response
	response	level
(MASTER field test)	Indoor.	
	Yearly mean.	
	(4*3 months)	
1. Blickling Hall	0.0089	1
2. National Museum of Krakow. The Jan Matejko House.	0.0143	2
3. The Karol Szymanowski Museum, "Atma", Zakopane	0.0177	3
4. Schwarzwälder Trachtenmuseum, Haslach	0.0186	3
5. The Museum of Decorative Arts & Design, Oslo.	0.0196	3
6. Trøndelag Folk Museum, Trondheim.	0.0212	3
7. Wignacourt Collegiate Museum, Malta.	0.0214	3
8. The Historical Museum of Crete. Iraklion	0.0217	3
9. Haus der Geschichte Baden-Württemberg, Stuttgart	0.0284	4
10. Tower of London, Bloody Tower.	0.0312	4

