COMPOSITION AND CHEMISTRY OF MUSEUM AIR

Peter Brimblecombe School of Environmental Sciences UEA Norwich

| | || TWO DECADES OF CHANGE

- In the 1980's I became interested in museum atmospheres – a literature ultimately published in Atmos. Env. (1991)
- IAQ Museum Pollution : Detection and Mitigation of Carbonyls Strathclyde University June 1998.

||||| 1990's PERSPECTIVE

Monitoring- sensitive inexpensive
 Emission factors from display materials
 Deposition velocities on key materials
 Chemical transformations:

 particles in air
 oxidation of HCHO

 Critical levels

U FUNDING

- Exterior stone work
- Metals, wood, paper, movables
- External factors, restoration treatments, socio-economic issues

||| THE MUSEUM ENVIRONMENT

Like most cultural environments that of pictures is a restricted yet imposes both internal and external threats

|| RESEARCH INPUT

FACTORS THAT DAMAGE ULTURAL HERITAGE

- War and vandalism
- Urban development
- Earthquakes and storms
- Temperature
- Humidity
- Light
- Air pollution

Appear as:

impulses cycles cumulative doses

JFOCUS ON RELEVANT GASES

- Sulfur dioxide
- Nitrogen dioxide
- Ozone
- Formaldehyde
- Formic acid
- Hydrogen sulfide
- Carbonyl sulfide
- Pesticides, surfactants

AVANCES IN INDOOR AIR SCIENCE

- Health motivation SBS
- More interest in air chemistry
- Outgassing and reactive emissions of surfaces

DISCIPLINARY TRENDS

CUMULATIVE PROCESSES POLLUTANTS AND LIGHT

A lead weight severely corroding, due to chipboard bottom of show case.

from an Austrian museum

...a long departed pollutant?

...mitigation though filtration

photo © Christoph Waller, 2001

HISTORIC INDOOR SULPHUR DIOXIDE

CUMULATIVE SULPHUR DEPOSITION

III INDOOR OUTDOOR RATIOS

- Very unifying concept that compares interiors
- >1 indoor source
- <1 indoor loss mechanisms
 O₃ and SO₂ very effective loss

III INDOOR AIR POLLUTANTS

 Gas desorption Secondary emissions-O₃ reaction fabrics
 Secondary products -O₃ reaction with terpenes

RAYCHAUDHURI M and BOWDEN D UEA

PERSIAN LEATHER SADDLE BAGS

 Iron or green copper pigment at leather surface may catalyze sulfuric acid formation

| | | | REACTIONS IN MUSEUM CASES

Lead in a formaldehyde atmosphere only corrodes on oxidation to formic acid...

Michele Raychaudhuri

Oxidation potential not concentration relevant to damage...

SYNERGISMS

Lead formate expected, but carbonates often found... especially

 $HCHO + H_2O_2$

plumbonacrite, $Pb_{10}(CO_3)_6(OH)_6O$ hydrocerussite, $Pb_3(CO_3)_2(OH)_2$

 $Pb(HCOO)_2 + H_2O + CO_2$

 $= 2HCOOH_{(g)} + PbCO_3$

Carbonate stabilised at low formic acid pressures

Right print was pinned to a chipboard notice board for six months,

Morten Ryhl-Svendsen

GAS FADING

- Now a huge problem from ozone and ink jet printers
- Loss of aerial perspective
- ...but copper from verdigris (copper acetate) binds to fatty or resin acids

Gunn et al Studies in Conservation 47 (1): 12-23 2002

NATURAL ORGANIC COLORANTS

Exposures 12 week HNO₃ 12ppb NO₂ 500ppb O₃ 400ppb

SYNTHETIC ORGANIC COLORANTS

Exposures 12 week HNO₃ 12ppb NO₂ 500ppb O₃ 400ppb

SULFIDES AND SILVER SILPROT

Wool and many other materials generate sulfides which tarnish silver.... often not H₂S!

> $COS + Ag_2O$ = AgS + CO₂

Synergisms...

Early silver bicycle trophy http://www.juliaauctions.com/

HYDROGEN SULFIDE and LEAD PIGMENTS

Special problem in volcanic regions, such as Rotorua New Zealand. Snow in painting goes black!

$2PbCO_3.Pb(OH)_2 + H_2S \rightarrow PbS +$

| | | | RESTORATION

Oxidize the sulfide with a solution of hydrogen peroxide in ether

VARNISHES and POLYMERS

Increasing variety

 hard to identify
 long term stability poorly
 understood

 Unsaturated compounds role of ozone, radicals, light colour changes

• Film base archival relevance cellulose nitrate

IIII IRON GALL INK

 Firstly fluorescence in the immediate vicinity of the ink writing under UV-light is noticeable

The second secon

A de la de l

HS 18

http://www.knaw.nl/ecpa/ink/index.html

CHEMICAL CEMENTATION

Cement microcrystalline calcites

ROLE OF FINE PARTICLES

MONITORING SIMPLE / ROBUST

long response times low sensitivity low selectivity, drift...

Passive devices
Solid state
Glass/dye dosimeters
Fluorescent dosimeters
Corrosion layers

Detailed analysis: time-consuming interpretation

...beyond the Oddy test!

Dust shed from visitors recognised as a major problem for open display

MODELLING: THERMODYNAMIC or *IMPACT*

Interest in modelleing as a tool...

|||| MUSEUM EPIDEMIOLOGY

Total response of collectionPitt Rivers Museum!

|||| PATINA AESTHETICS

- Damage recognition
- Surface changes over time may not all be negative

KEY POLICY ISSUES

- Increasing access
- Open display
- Preventive conservation
- Integration of research into policy

